In vitro and in vivo activities of a novel cephalosporin, BMS-247243, against methicillin-resistant and -susceptible staphylococci.

نویسندگان

  • Joan C Fung-Tomc
  • Junius Clark
  • Beatrice Minassian
  • Michael Pucci
  • Yuan-Hwang Tsai
  • Elizabeth Gradelski
  • Lucinda Lamb
  • Ivette Medina
  • Elizabeth Huczko
  • Benjamin Kolek
  • Susan Chaniewski
  • Cheryl Ferraro
  • Thomas Washo
  • Daniel P Bonner
چکیده

The recent emergence of methicillin-resistant Staphylococcus aureus (MRSA) with decreased susceptibility to vancomycin has intensified the search for alternative therapies for the treatment of infections caused by this organism. One approach has been to identify a beta-lactam with improved affinity for PBP 2a, the target enzyme responsible for methicillin resistance in staphylococci. BMS-247243 is such a candidate, with MICs that inhibit 90% of isolates tested (MIC(90)s) of 4, 2, and 8 microg/ml for methicillin-resistant strains of S. aureus, S. epidermidis, and S. haemolyticus, respectively, as determined on plates with Mueller-Hinton agar and 2% NaCl. The BMS-247243 MICs for MRSA were minimally affected by the susceptibility testing conditions (inoculum size, prolonged incubation, addition of salt to the test medium) or by staphylococcal beta-lactamases. BMS-247243 MIC(90)s for methicillin-susceptible staphylococcal species ranged from < or = 0.25 to 1 microg/ml. The BMS-247243 MIC(90) for beta-lactamase-producing S. aureus strains was fourfold higher than that for beta-lactamase-nonproducing strains. BMS-247243 is hydrolyzed by staphylococcal beta-lactamases at 4.5 to 26.2% of the rates measured for cephaloridine. The affinity of BMS-247243 for PBP 2a was >100-fold better than that of methicillin or cefotaxime. BMS-247243 is bactericidal for MRSA, killing the bacteria twice as fast as vancomycin. These in vitro activities of BMS-247243 correlated with its in vivo efficacy against infections in animals, including the neutropenic murine thigh and rabbit endocarditis models involving MRSA strains. In conclusion, BMS-247243 has in vitro and in vivo activities against methicillin-resistant staphylococci and thus may prove to be useful in the treatment of infections caused by these multidrug-resistant organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro and in vivo activities of a novel cephalosporin, BMS-247243, against organisms other than staphylococci.

BMS-247243, a novel cephalosporin inhibitory for methicillin-resistant staphylococci, primarily has activity against gram-positive bacteria. The activities of BMS-247243, cefotaxime, and ceftriaxone against streptococci and Streptococcus pneumoniae were similar. BMS-247243 inhibits Enterococcus faecalis but not Enterococcus faecium. BMS-247243 also inhibits many inherently vancomycin-resistant ...

متن کامل

In vitro activities of a novel cephalosporin, CB-181963 (CAB-175), against methicillin-susceptible or -resistant Staphylococcus aureus and glycopeptide-intermediate susceptible staphylococci.

We examined the activity of CB-181963, a novel cephalosporin, against methicillin-resistant Staphylococcus aureus (MRSA) (n = 200), methicillin-susceptible S. aureus (MSSA) (n = 50), glycopeptide-intermediate Staphylococcus species (GISS) (n = 47), and VRSA (n = 2) isolates. CB-181963 exhibited MIC profiles similar to those of linezolid against MRSA and GISS; however, activity against MSSA was ...

متن کامل

In-vitro and In-vivo Evaluation of Silymarin Nanoliposomes against Isolated Methicillin-resistant Staphylococcus aureus

Staphylococcus aureus is an opportunistic pathogen and remains a common cause of burn wound infections. Different studies have shown that entrapment of plant-derived compounds into liposomes could increase their anti-Staphylococcus aureus activity. Silymarin is the bioactive extract from the known plant Silybum marianum L. The objective of this study was to evaluate efficacy of silymarin in fre...

متن کامل

In-vitro and In-vivo Evaluation of Silymarin Nanoliposomes against Isolated Methicillin-resistant Staphylococcus aureus

Staphylococcus aureus is an opportunistic pathogen and remains a common cause of burn wound infections. Different studies have shown that entrapment of plant-derived compounds into liposomes could increase their anti-Staphylococcus aureus activity. Silymarin is the bioactive extract from the known plant Silybum marianum L. The objective of this study was to evaluate efficacy of silymarin in fre...

متن کامل

Evaluation of Tigecycline Activity Against Methicillin-Resistante Staphylococcus aureus Isolated from Biological Samples

Tigecycline is a new glycylcycline antibiotic structurally similar to minocycline antibiotic. It has broad spectrum activity, including Staphylococcus aureus infections. This is the first study that evaluated the activity of Tigecycline against Staphylococcus aureus isolated from biological samples in Iran. In vitro activity of tigecycline against 160 Staphylococcus aureus including 99 methicil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 46 4  شماره 

صفحات  -

تاریخ انتشار 2002